Rich document representation and classification : An analysis q
نویسندگان
چکیده
There are three factors involved in text classification. These are classification model, similarity measure and document representation model. In this paper, we will focus on document representation and demonstrate that the choice of document representation has a profound impact on the quality of the classifier. In our experiments, we have used the centroid-based text classifier, which is a simple and robust text classification scheme. We will compare four different types of document representations: N-grams, Single terms, phrases and RDR which is a logic-based document representation. The N-gram representation is a string-based representation with no linguistic processing. The Single term approach is based on words with minimum linguistic processing. The phrase approach is based on linguistically formed phrases and single words. The RDR is based on linguistic processing and representing documents as a set of logical predicates. We have experimented with many text collections and we have obtained similar results. Here, we base our arguments on experiments conducted on Reuters-21578. We show that RDR, the more complex representation, produces more effective classifier on Reuters-21578, followed by the phrase approach. 2008 Published by Elsevier B.V. T 34
منابع مشابه
A New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملDocument Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملThe Representation of Social Actors in the Graduate Employability Issue: Online News and the Government Document
This paper presents the first part of a larger study on the issue of graduate employability in Malaysia as construed in public discourse in English, a language of power in Malaysia. The term employability itself has many definitions depending on the requirements of government and industry, and in the case of Malaysia, the English-language ability of graduates is inseparable from graduate employ...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008